Uncertainty and probability

CE417: Introduction to Artificial Intelligence Sharif University of Technology Fall 2023

Soleymani

Most slides have been adopted from Klein and Abdeel, CS188, UC Berkeley.

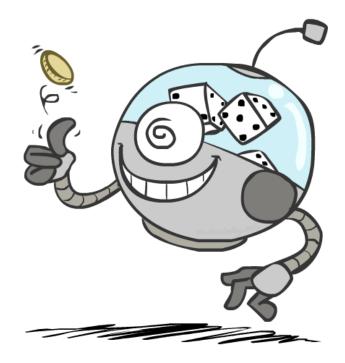
Our Status

- We're done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - Iots more!
- Part III: Machine Learning

Today

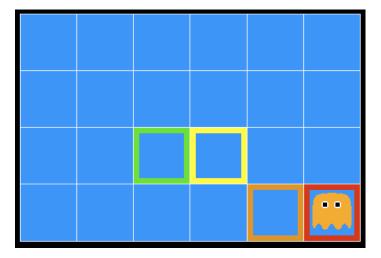
Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!



Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - ▶ I or 2 away: orange
 - > 3 or 4 away: yellow
 - ▶ 5+ away: green



Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

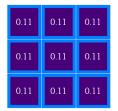
[Demo: Ghostbuster – no probability (L12D1)]

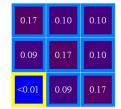
Video of Demo Ghostbuster – No probability

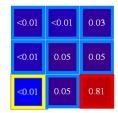
Uncertainty

General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge







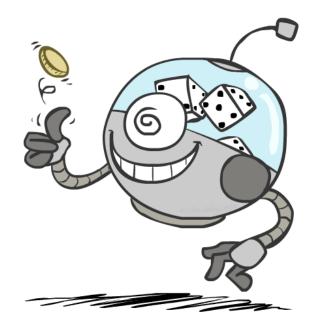
Probability: summarizing uncertainty

- Probability summarizes the uncertainty
- Probabilities are made w.r.t the current knowledge state (not w.r.t the real world)
 - Probabilities of propositions can change with new evidence

```
    e.g., P(on time) = 0.7
    P(on time | time= 5 p.m.) = 0.6
```

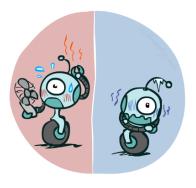
Random Variables

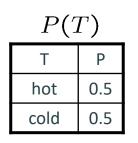
- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - ▶ D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

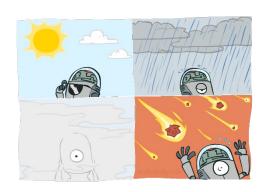


Probability Distributions

- Associate a probability with each value
 - Temperature:



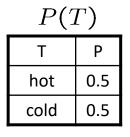




W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions



P(W)			
W	Р		
sun	0.6		
rain	0.1		
fog	0.3		
meteor	0.0		

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

• Must have:
$$\forall x \ P(X = x) \ge 0$$
 and

$$\sum_{x} P(X = x) = 1$$

Shorthand notation: P(hot) = P(T = hot), P(cold) = P(T = cold), P(rain) = P(W = rain),.... OK if all domain entries are unique

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Must obey: $P(x_1, x_2, \dots x_n) \ge 0$ $\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$
- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

 A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact

Constraint satisfaction problems:

- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

An event is a set E of outcomes

 $P(E) = \sum_{(x_1 \dots x_n) \in E} P(x_1 \dots x_n)$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

▶ P(+x, +y) ?

► P(+x) ?

▶ P(-y OR +x) ?

P(X,Y)

Х	Y	Р
+x	+y	0.2
+x	-у	0.3
-X	+у	0.4
-X	-у	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(x,y)

				<i>P</i> ((T)
I	P(T, W	()		Т	Р
Т	W	Р		hot	0.5
hot	sun	0.4	$P(t) = \sum P(t,s)$	cold	0.5
hot	rain	0.4	$P(t) = \sum_{s} P(t,s)$	P(W
					· ·)
cold	sun	0.2		W	Р
cold	rain	0.3	$D()$ $\sum D(t_{i})$	sun	0.6
			$P(s) = \sum_{t} P(t, s)$	rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(a,b)$$

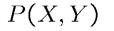
$$P(a)$$

$$P(b)$$

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

P(+x | +y) ?



Х	Y	Р
+x	+у	0.2
+x	-у	0.3
-X	+у	0.4
-X	-у	0.1

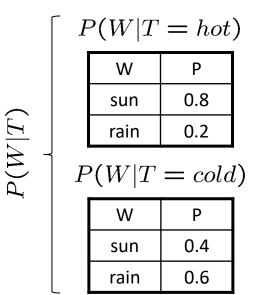
▶ P(-x | +y) ?

▶ P(-y | +x) ?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions



Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

= $\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.2}{0.2 + 0.3} = 0.4$ $P(W|T = c)$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

=
$$\frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.3}{0.2 + 0.3} = 0.6$$

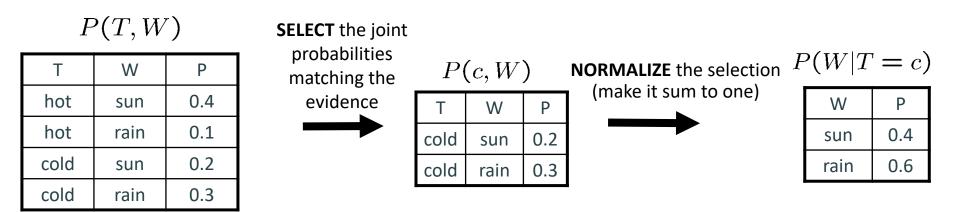
WPsun0.4rain0.6

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

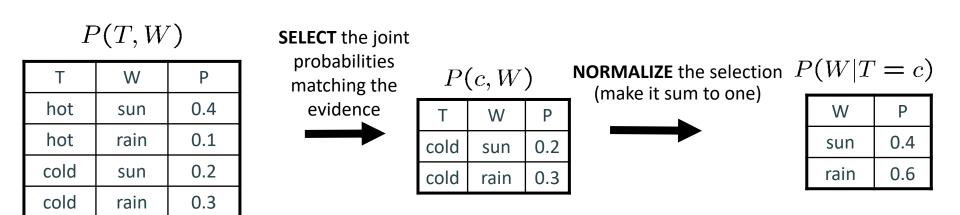
=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$



$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

20

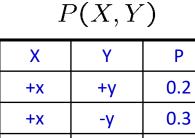
Normalization Trick



Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick P(X | Y=-y) ?



+y

-y

0.4

0.1

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

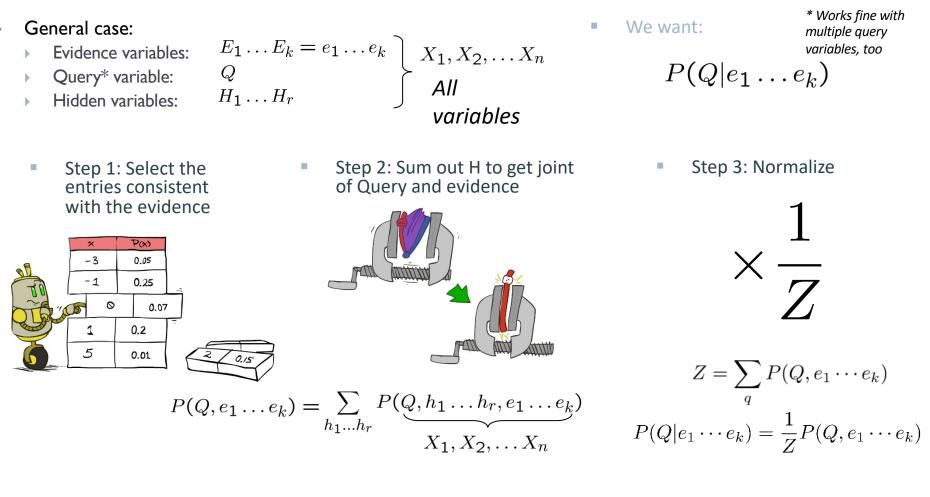
-X

-X

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration



Inference by Enumeration

► P(W)?

P(W | winter)?

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

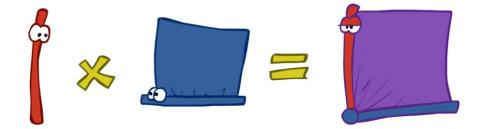
Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $P(x|y) = \frac{P(x,y)}{P(y)}$



The Product Rule

P(y)P(x|y) = P(x,y)

• Example:

P(D|W)

P(W)		
R	Р	
sun	0.8	
rain	0.2	

	-		
D	W	Р	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

P(D,	W)
------	----

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

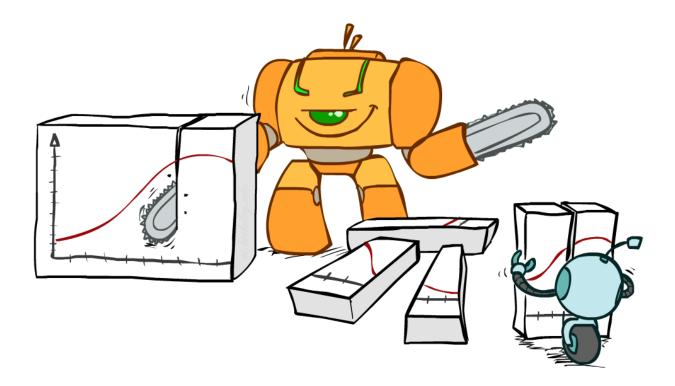
The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Why is this always true?

Bayes Rule



Bayes' Rule

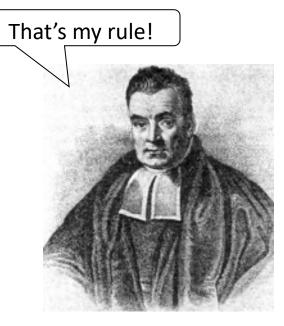
• Two ways to factor a joint distribution over two variables:

P(x,y) = P(x|y)P(y) = P(y|x)P(x)

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g.ASR, MT)
- In the running for most important AI equation!



Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

 $P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$

- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \ \begin{array}{c} \text{Example} \\ \text{givens} \end{array}$$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

• Given:

P(D|W)

P(W)		
R	Р	
sun	0.8	
rain	0.2	

 -		
D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry) ?

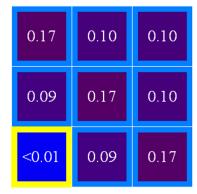
Ghostbusters, Revisited

Let's say we have two distributions:

- Prior distribution over ghost location: P(G)
 - Let's say this is uniform
- Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (I,I)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11



Video of Demo Ghostbusters with Probability

Probabilistic Models

Models describe how (a portion of) the world works

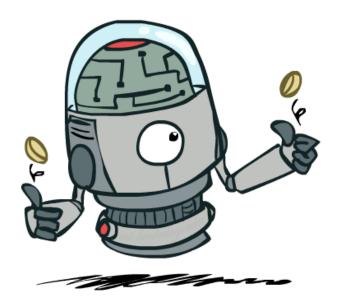
Models are always simplifications

- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
 - George E. P. Box

What do we do with probabilistic models?

- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Independence



Independence

Two variables are *independent* if:

 $\forall x, y : P(x, y) = P(x)P(y)$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

 $\forall x, y : P(x|y) = P(x)$

- We write: $X \perp\!\!\!\perp Y$
- Independence is a simplifying modeling assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

_	P(T)		
	Т	Р	
	hot	0.5	
	cold	0.5	

D_{\star}	(T)	W
	$(\bot,$	VV J

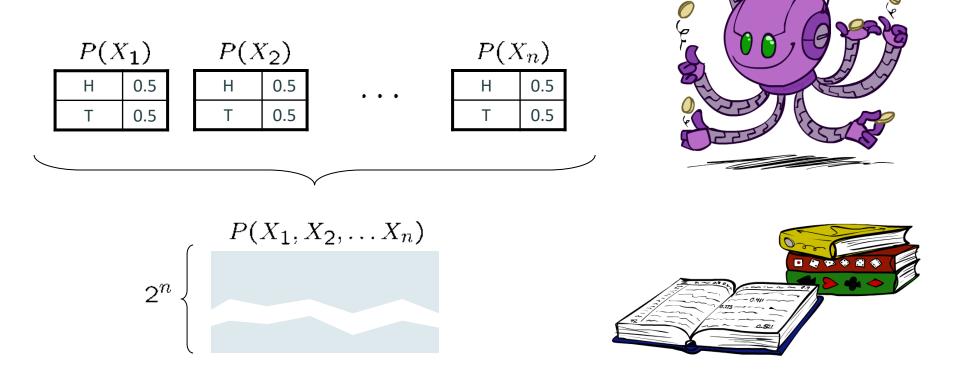
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

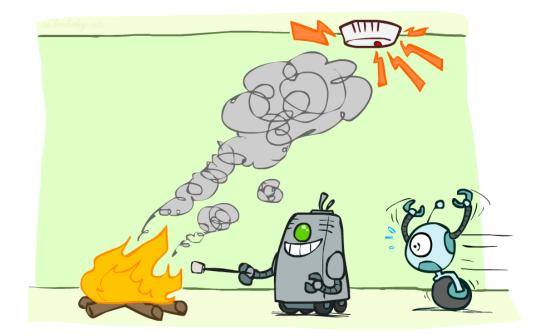
P(W)		
W	Р	
sun	0.6	
rain	0.4	

 $P_2(T, W)$

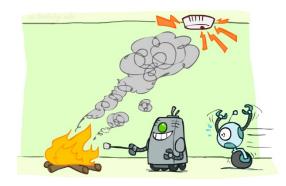
Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

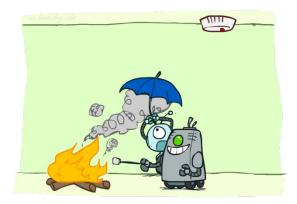
- **Example: Independence**
- N fair, independent coin flips:





- What about this domain:
 - Fire
 - Smoke
 - Alarm





- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$X \bot\!\!\!\perp Y | Z$$

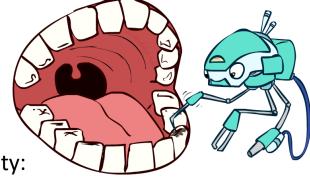
if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)

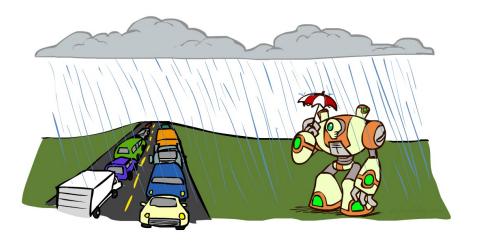


Equivalent statements:

- P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

What about this domain:

- Traffic
- Umbrella
- Raining



Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:
- P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:
- P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)
- Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top

```
Givens:
P(+\alpha) =
```

$$P(+g) = 0.5$$

$$P(-g) = 0.5$$

$$P(+t | +g) = 0.8$$

$$P(+t | -g) = 0.4$$

$$P(+b | +g) = 0.4$$

$$P(+b | -g) = 0.8$$

P(T,B,G) = P(G) P(T|G) P(B|G)

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	-g	0.16
+t	-b	+g	0.24
+t	-b	-b	0.04
-t	+b	+g	0.04
-t	+b	-bo	0.24
-t	-b	+g	0.06
-t	-b	-b	0.06

Probability Summary

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)

• Chain rule
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$

= $\prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$

- X,Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $X \perp \!\!\!\perp Y | Z$ $\forall x, y, z : P(x, y | z) = P(x | z) P(y | z)$