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Our Status

} We’re done with Part I Search and Planning!

} Part II: Probabilistic Reasoning
} Diagnosis
} Speech recognition
} Tracking objects
} Robot mapping
} Genetics
} Error correcting codes
} … lots more!

} Part III: Machine Learning
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Today

} Probability
} RandomVariables
} Joint and Marginal Distributions
} Conditional Distribution
} Product Rule, Chain Rule, Bayes’ Rule
} Inference
} Independence

} You’ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!
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Inference in Ghostbusters

} A ghost is in the grid somewhere

} Sensor readings tell how close a
square is to the ghost
} On the ghost: red

} 1 or 2 away: orange

} 3 or 4 away: yellow

} 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

§ Sensors are noisy, but we know P(Color | Distance)

[Demo: Ghostbuster – no probability (L12D1) ]
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Video of Demo Ghostbuster – No probability
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Uncertainty

} General situation:

} Observed variables (evidence): Agent knows certain things
about the state of the world (e.g., sensor readings or symptoms)

} Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

} Model: Agent knows something about how the known variables
relate to the unknown variables

} Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge
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Probability: summarizing uncertainty

} Probability summarizes the uncertainty

} Probabilities are made w.r.t the current knowledge state (not
w.r.t the real world)
} Probabilities of propositions can change with new evidence

} e.g., P(on time) = 0.7
} P(on time | time= 5 p.m.) = 0.6
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Random Variables
} A random variable is some aspect of the world about
which we (may) have uncertainty

} R = Is it raining?
} T = Is it hot or cold?
} D = How long will it take to drive to work?
} L =Where is the ghost?

} We denote random variables with capital letters

} Like variables in a CSP, random variables have domains

} R in {true, false} (often write as {+r, -r})
} T in {hot, cold}
} D in [0,¥)
} L in possible locations, maybe {(0,0), (0,1),…}
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Probability Distributions

} Associate a probability with each value

} Temperature:

T P
hot 0.5

cold 0.5

W P

sun 0.6
rain 0.1

fog 0.3
meteor 0.0

Ø Weather: 
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Shorthand notation:

OK if all domain entries are unique

Probability Distributions
} Unobserved random variables have distributions

} A distribution is aTABLE of probabilities of values

} A probability (lower case value) is a single number

} Must have: and

T P
hot 0.5

cold 0.5

W P
sun 0.6

rain 0.1
fog 0.3

meteor 0.0

10



Joint Distributions

} A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome):

} Must obey:

} Size of distribution if n variables with domain sizes d?

} For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Probabilistic Models

} A probabilistic model is a joint distribution
over a set of random variables

} Probabilistic models:
} (Random) variables with domains
} Assignments are called outcomes
} Joint distributions: say whether assignments
(outcomes) are likely

} Normalized: sum to 1.0
} Ideally: only certain variables directly interact

} Constraint satisfaction problems:
} Variables with domains
} Constraints: state whether assignments are
possible

} Ideally: only certain variables directly interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
hot sun T
hot rain F
cold sun F
cold rain T

Distribution over T,W

Constraint over T,W
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Events
} An event is a set E of outcomes

} From a joint distribution, we can
calculate the probability of any event

} Probability that it’s hot AND sunny?
} Probability that it’s hot?
} Probability that it’s hot OR sunny?

} Typically, the events we care about
are partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3
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Quiz: Events

} P(+x, +y) ?

} P(+x) ?

} P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1
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Marginal Distributions
} Marginal distributions are sub-tables which eliminate variables

} Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4
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Conditional Probabilities

} A simple relation between joint and conditional probabilities
} In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)
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Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

} P(+x | +y) ?

} P(-x | +y) ?

} P(-y | +x) ?
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Conditional Distributions

} Conditional distributions are probability distributions over
some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution
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Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6
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SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

NORMALIZE the selection
(make it sum to one)
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Normalization Trick

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6

T W P
cold sun 0.2
cold rain 0.3

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the selection
(make it sum to one)

} Why does this work? Sum of selection is P(evidence)! (P(T=c), here)
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Quiz: Normalization Trick

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

NORMALIZE the 
selection

(make it sum to one)

} P(X |Y=-y) ?
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Probabilistic Inference

} Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

} We generally compute conditional probabilities
} P(on time | no reported accidents) = 0.90
} These represent the agent’s beliefs given the evidence

} Probabilities change with new evidence:
} P(on time | no accidents, 5 a.m.) = 0.95
} P(on time | no accidents, 5 a.m., raining) = 0.80
} Observing new evidence causes beliefs to be updated
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Inference by Enumeration

} General case:
} Evidence variables:
} Query* variable:
} Hidden variables:

All 
variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z
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Inference by Enumeration

} P(W)?

} P(W | winter)?

} P(W | winter, hot)?

S T W P
summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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§ Obvious problems:
§ Worst-case time complexity O(dn) 

§ Space complexity O(dn) to store the joint distribution

Inference by Enumeration

26



The Product Rule

} Sometimes have conditional distributions but want the joint
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The Product Rule

} Example:

R P

sun 0.8
rain 0.2

D W P
wet sun 0.1

dry sun 0.9
wet rain 0.7

dry rain 0.3

D W P
wet sun 0.08

dry sun 0.72
wet rain 0.14

dry rain 0.06
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The Chain Rule

} More generally, can always write any joint distribution
as an incremental product of conditional distributions

} Why is this always true?
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Bayes Rule
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Bayes’ Rule

} Two ways to factor a joint distribution over two variables:

} Dividing, we get:

} Why is this at all helpful?

} Lets us build one conditional from its reverse
} Often one conditional is tricky but the other one is simple
} Foundation of many systems we’ll see later (e.g.ASR,MT)

} In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule
} Example: Diagnostic probability from causal probability:

} Example:
} M:meningitis, S: stiff neck

} Note: posterior probability of meningitis still very small

} Note: you should still get stiff necks checked out! Why?

Example
givensP (+s|�m) = 0.01

P (+m|+ s) =
P (+s|+m)P (+m)

P (+s)
=

P (+s|+m)P (+m)

P (+s|+m)P (+m) + P (+s|�m)P (�m)
=

0.8⇥ 0.0001

0.8⇥ 0.0001 + 0.01⇥ 0.9999
= 0.007937

P (+m) = 0.0001
P (+s|+m) = 0.8

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)
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Quiz: Bayes’ Rule
} Given:

} What is P(W | dry) ?

R P
sun 0.8

rain 0.2

D W P

wet sun 0.1
dry sun 0.9

wet rain 0.7
dry rain 0.3
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Ghostbusters, Revisited

} Let’s say we have two distributions:
} Prior distribution over ghost location: P(G)

} Let’s say this is uniform
} Sensor reading model: P(R | G)

} Given: we know what our sensors do
} R = reading color measured at (1,1)
} E.g. P(R = yellow | G=(1,1)) = 0.1

} We can calculate the posterior distribution
P(G|r) over ghost locations given a reading
using Bayes’ rule:
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Video of Demo Ghostbusters with 
Probability
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Probabilistic Models

} Models describe how (a portion of) the world works

} Models are always simplifications
} May not account for every variable
} May not account for all interactions between variables
} “All models are wrong; but some are useful.”

– George E. P. Box

} What do we do with probabilistic models?
} We (or our agents) need to reason about unknown variables, given evidence
} Example: explanation (diagnostic reasoning)
} Example: prediction (causal reasoning)
} Example: value of information
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Independence
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} Two variables are independent if:

} This says that their joint distribution factors into a product two simpler
distributions

} Another form:

} We write:

} Independence is a simplifyingmodeling assumption

} Empirical joint distributions: at best “close” to independent

} What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

T W P

hot sun 0.3
hot rain 0.2

cold sun 0.3
cold rain 0.2

T P
hot 0.5

cold 0.5

W P
sun 0.6

rain 0.4
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Example: Independence
} N fair, independent coin flips:

H 0.5

T 0.5

H 0.5
T 0.5

H 0.5
T 0.5
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Conditional Independence
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Conditional Independence

} What about this domain:
} Fire
} Smoke
} Alarm
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Conditional Independence
} Unconditional (absolute) independence very rare (why?)

} Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

} X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if
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Conditional Independence
} P(Toothache, Cavity, Catch)

} If I have a cavity, the probability that the probe catches in it
doesn't depend on whether I have a toothache:
} P(+catch | +toothache, +cavity) = P(+catch | +cavity)

} The same independence holds if I don’t have a cavity:
} P(+catch | +toothache, -cavity) = P(+catch| -cavity)

} Catch is conditionally independent of Toothache given Cavity:
} P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily
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Conditional Independence

} What about this domain:
} Traffic
} Umbrella
} Raining
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Conditional Independence and the Chain Rule

} Chain rule:

} Trivial decomposition:

} With assumption of conditional independence:

} Bayes’nets / graphical models help us express conditional independence assumptions
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Ghostbusters
§ Each sensor depends only

on where the ghost is

§ That means, the two sensors 
are conditionally independent, 
given the ghost position

§ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

§ Givens:
P( +g ) = 0.5
P(  -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  |  -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16
+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04

-t +b +g 0.04
-t +b -g 0.24
-t -b +g 0.06
-t -b -g 0.06
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Probability Summary

§ Conditional probability

§ Product rule

§ Chain rule

§ X,Y independent if and only if:

§ X andY are conditionally independent given Z if and only if:
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